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Figure 1: Image inpainting results by our proposed method.

Abstract
Recent GAN-based image inpainting approaches adopt an average strategy to discriminate the generated image and output
a scalar, which inevitably lose the position information of visual artifacts. Moreover, the adversarial loss and reconstruction
loss (e.g., `1 loss) are combined with tradeoff weights, which are also difficult to tune. In this paper, we propose a novel
detection-based generative framework for image inpainting, which adopts the min-max strategy in an adversarial process.
The generator follows an encoder-decoder architecture to fill the missing regions, and the detector using weakly supervised
learning localizes the position of artifacts in a pixel-wise manner. Such position information makes the generator pay attention
to artifacts and further enhance them. More importantly, we explicitly insert the output of the detector into the reconstruction
loss with a weighting criterion, which balances the weight of the adversarial loss and reconstruction loss automatically rather
than manual operation. Experiments on multiple public datasets show the superior performance of the proposed framework.
The source code is available at https://github.com/Evergrow/GDN_Inpainting.

CCS Concepts
• Computing methodologies → Image processing;

1. Introduction

Image inpainting is a technique of filling the semantically correct
and visually plausible contents in the missing regions of corrupted

† Corresponding Author

images, as shown in Fig. 1. It has various applications, such as re-
pairing deteriorated photographs, removing undesired objects from
images, and even editing specified contents of images. Different
from general generative tasks, image inpainting deals with cor-
rupted images with plenty of contextual background, which is not
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only prior information to assist in reconstruction but also is a con-
straint to limit generated contents.

Early works attempt to fill missing regions with some opti-
mization algorithms, e.g., propagating the isophotes from bound-
aries [BBC*01; BSCB00; EF01] or copying the matching infor-
mation from background patches into missing regions [BSFG09;
DSB*12; HKAK14]. These methods with low-level features
achieve good results especially inpainting background or some
repetitive patterns. However, as they cannot extract high-level se-
mantic information, they often fail to generate reasonable structures
with novel patterns in real-world scenarios. Moreover, high compu-
tational cost also limits their deployment in practical applications.

With the advance of deep learning, i.e., convolutional
neural networks (CNN) and generative adversarial networks
(GAN) [GPM*14], recent works [PKD*16; YLL*17; ISI17;
LRS*18; YLL*18; ZFCG19] model image inpainting as a condi-
tional generation problem to learn the mapping between the cor-
rupted input images and the ground-truth images. These deep in-
painting techniques extract rich semantic information from large
scale training data, based on contextual background, to fill miss-
ing regions with plausible contents and textures. Joint adversarial
training also improves the visually realistic effect of image recov-
ery. Unfortunately, these methods often suffer from distorted struc-
tures, blurry artifacts and distinct incoherence with surrounding ar-
eas, especially for complex scenes.

To address above problems, some deep inpainting meth-
ods [YLY*18; YLY*19; NNJ*19; RYZ*19] utilize two-stage net-
works that rough out the missing structures or contents in the first
stage, and then recover refined textures using coarse information in
the second stage. Contextual attention [YLY*18] inserts the atten-
tion module into the second stage to encourage spatial coherency
of attention. Based on the structure image from the first stage,
StructureFlow [RYZ*19] generates the textures to fill missing re-
gions, which shows reasonable structures and vivid details. Com-
pared with single encoder-decoder networks, however, two-stage
networks are much deeper and thus cause extra computational cost
and inference time.

In addition, most deep inpainting methods [PKD*16; ISI17;
YLY*18] follow an adversarial framework, which not only creates
realistic results but also provides an agonizing multi-objective op-
timization. The first objective is the coherence and similarity with
ground-truth images formulated as the reconstruction loss, and an-
other objective is the perceptually realistic results programmed as
the adversarial loss. Several tradeoff parameters are empirically set
up to optimize these two objectives simultaneously. To our best
knowledge, there are seldom works that improve this strategy with
explicable theories.

To address the limitation discussed above, we propose a novel
inpainting framework, comprising a generative model and a de-
tective model, with a unique objective function to optimize. Gen-
erative network is an encoder-decoder architecture with residual
blocks [HZRS16] for repairing the corrupted images. Inspired by
the image segmentation task [LSD15], we design and implement
a fully convolutional network as detective network to evaluate the
inpainting results in a pixel-wise manner. The binary mask is the

target of the detective network using an approach of weakly su-
pervised learning to capture visual artifacts of entire generated im-
age. Compared with a single scalar from the standard discrimina-
tor, the location information of artifacts with up-sampling builds
a dense mapping function between the output image and ground-
truth image for more accurate valuation. Under the guidance of
accurate valuation, inpainting techniques pay more attention to ar-
tifacts such as distortion, blurriness and incoherence, and reduce
them, thus making the valuation from the detector trend inaccu-
rate. The adversarial learning of the generator and detector moves
from “whether” to “where”. Moreover, we propose a reconstruc-
tion loss weighted the valuation as inpainting objective function to
solve the multi-objective optimization. This loss function without
the hyper-parameter is better for describing the image inpainting
task. The optimal balance between vraisemblance and similarity is
taken by networks rather than empiricism. Our contributions are
summarized as follows:

• We propose a novel framework that merges the generator and
the detector, and both experimental results and explicable theory
show that this framework contributes to reduce artifacts.
• The detector using weakly supervised learning makes a dense

estimate of the entire inpainted image, which is similar to human
perceptual evaluation.
• We design a weighted reconstruction loss to optimize the com-

bined inpainting objectives including vraisemblance and similar-
ity automatically, which achieves superior results.

2. Related Work

Existing image inpainting approaches can be classified into two
categories: low-level features based approaches and deep seman-
tic features based approaches. The former usually involves some
geometric techniques for texture synthesis or structure propagation
in low-level features. The latter often solves the inpainting problem
by deep neural networks to extract global semantic features.

2.1. Methods Based on Low-level Features

Approaches based on low-level features are roughly divided into
diffusion-based methods and patch-based methods. Traditional
diffusion-based methods [BBC*01; BSCB00; EF01] typically uti-
lize variational algorithms to propagate neighboring appearance in-
formation (e.g., the isophotes) into the missing regions. Due to the
limited extended prediction of partial differential equation, these
methods could not produce good results when the missed regions
are broad. The restoration regions generated by this kind of meth-
ods also lack meaningful structure information.

Unlike diffusion-based methods just focusing on the surround-
ing pixels of missing regions, patch-based methods [DSB*12;
HKAK14; DAFC19] measure the similarity between missing re-
gions and each patch from the whole context, and recover target
region by copying the matched patch. Bidirectional similarity mea-
sure [SCSI08] is proposed to model visual data for summarization
and reduce visual artifacts. However, dense computation of patch
similarity often comes at an expensive computation cost. To ac-
celerate these searching algorithms, PatchMatch [BSFG09] cap-
tures patch matches via random sampling and natural coherence
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in the imagery, and it is widely used in the interactive editing tools.
Low-level features based approaches lacking deep understanding
of whole image just generate repetitive content from background
without unique filling information.

2.2. Methods Based on Deep Semantic Features

Deep semantic features based approaches attempt to perceive the
semantic structure of the corrupted image by deep neural net-
works for better restoration results. Context Encoders [PKD*16]
first introduce CNNs for inpainting missing regions. The proposed
encoder-decoder architecture is trained via incorporated recon-
struction loss and adversarial loss [GPM*14]. However, this net-
work excessively concerns about entire consistency and it often
results in visual artifacts in detailed regions. To generate high-
frequency details, Yang et al. [YLL*17] propose a multi-scale neu-
ral patch synthesis based on joint optimization of image content
and texture constraints, and Iizuka et al. [ISI17] unite global and
local discriminator to assess completed image from generative net-
work with dilated convolutions [YK15]. However, local discrimi-
nator fails to deal with irregular missing regions.

Recently, deep inpainting techniques show the multiplex de-
velopment. Attention is an important mechanism for image in-
painting to build long-term correlations between missing regions
and distant contextual information [YLY*18; LJXY19; ZFCG19;
YLY*19]. Yu et al. [YLY*18] design a coarse-to-fine network
and first introduce contextual attention into refined network. How-
ever, effect of attention mechanism mainly depends on results of
coarse network, and poor coarse reconstruction often causes wrong
match. To avoid the interference of corrupted regions, some works
modify conventional convolutional operation, such as partial con-
volution [LRS*18] and gated convolution [YLY*19], calculating
convolution only on valid pixels. These variants succeed on re-
duction of blurry artifacts. EdgeConnect [NNJ*19] and Structure-
Flow [RYZ*19] generate reasonable structures with prior informa-
tion and then synthesize fine texture. This easy-to-difficult process
can obtain satisfactory visual effects, but it also needs sophisticated
preprocessing to extract edge maps [NNJ*19] or edge-preserved
smooth images [RYZ*19]. In addition, several works [LRS*18;
NNJ*19; XLL*19] project images into high-dimensional features
space built by pretrained VGG-16 [SZ14] on ImageNet [DDS*09]
and then measure the similarity by perceptual loss [JAF16] and
style loss [GEB16] to improve inpainting results. A possible lim-
itation is that it reduces filling generalization of the scene outside
ImageNet [DDS*09].

Deep inpainting approaches reviewed above mostly follow the
adversarial framework used in Context Encoders [PKD*16]. In this
framework, the discriminator takes the inpainted image as the in-
put to evaluate in level of whole image or its patches (e.g., Patch-
GAN [IZZE17]) , and discards the meaningful location information
of blurry artifacts in the adversarial loss when training the genera-
tor. Specially, in PatchGAN, the patch-level valuations constitute a
tensor, which is unseen for the generator, while the generator can
only access the adversarial loss after average. On the contrary, we
introduce a detective network to detect artifacts pixel by pixel, and
the output of the detector assists the generator in eliminating color
discrepancy and blurriness via an adaptive weighting strategy.

3. Proposed Method

Our proposed method utilizes a generative network to reconstruct
corrupted images and a detective network to evaluate outputs of the
generator to perform image inpainting, as shown in Fig. 2. In this
section, we first review GAN-based image inpainting. Then, we
present the proposed novel detection-based generative framework,
i.e., the coupling of the generator and the detector in training stage.
At last, the details of network architecture and the loss function of
our method are explained.

3.1. GAN-based Image Inpainting

Generative Adversarial Network [GPM*14] is an advanced gener-
ative framework including two nets: generator G and discriminator
D. The contest training strategy drives both networks to improve
their performance until reaching to a global optimum. Mathemati-
cally, this competitive process between G and D can be described
as a min-max optimization problem with value function V (G,D):

min
G

max
D

V (G,D) = Ex∼pdata(x)[logD(x)]

+Ez∼pz(z)[log(1−D(G(z)))],
(1)

where x is real data, and z is input noise. The distribution is omitted
for simplicity in following formulas. In Eq. (1), the discriminator
D tells the difference between real data distribution x and gener-
ated data distribution G(z) as much as possible. At the same time,
the generator G tries to mimic real data distribution and fool the
discriminator D.

Image inpainting is a special generative problem with plenty of
prior information (i.e., corrupted image) as input rather than ran-
dom noise. To improve the reconstruction quality of corrupted re-
gions, and make whole image more realistic and vivid, most of deep
image inpainting methods follow the GAN-based framework. The
corresponding optimization for image inpainting is written as:

min
G

max
D

V (G,D) =E[logD(Igt)]+E[log(1−D(G(Iin,M)))], (2)

where Igt is the ground-truth image, Iin is the input corrupted im-
age, and M is the binary mask (1: the missing region and 0: valid
regions). Usually, Iin = Igt � (1−M)+M, where � denotes pixel-
wise product.

For the generator G, the final objective function is the combina-
tion of the adversarial loss Ladv and the reconstruction loss L`1 ,
which measures the coherence and similarity between predicted
image and ground-truth image. Corresponding formulation can be
expressed as

LG = λadv ·Ladv +λ`1 ·L`1 (3)

= λadv ·E[log(1−D(G(Iin,M)))]+λ`1 · ||Iout − Igt ||1,

where Iout is the prediction of generator G, λadv and λ`1 are the
tradeoff parameters setting empirically.

3.2. Detection-based Generative Framework

As discussed above, the discriminator D in GAN actually is a clas-
sifier, which just outputs a single scalar (label or probability). This
scalar may not properly evaluate the quality of the generated image
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Figure 2: Illustration of our proposed detection-based generative framework.

for image inpainting, where non-masked regions with much infor-
mation easily has better reconstructed quality than the missing re-
gions. The common average criterion in D to some extent weakens
this difference, more precisely, loses the exact position information
of “authentic” artifacts. In extreme cases, such scalar might mis-
guide the generator G that pays less attention to the missing region.

To solve the above problems, we proposed a novel detection-
based generative framework for image inpainting. This framework
consists of a generator G and a detector Det . The generator G
repairs the missing region to be harmony with contextual back-
ground. The detector Det evaluates the output Iout of G in pixel-
wise manner and also localizes the unreasonable completion re-
gion, e.g., various artifacts, blurry patch, etc. Compared with a sin-
gle scalar of D in GAN, the precise localization significantly assists
the generator G in reconstructing of corrupted images.

Unfortunately, it is difficult to provide the ground-truth mask for
Det . In this work, we adopt a weakly supervised strategy: we con-
sider the binary mask M as the “proxy” of the ground-truth mask.
This is reasonable because the missing regions are usually diffi-
cult to predict than the non-masked regions (just reproducing the
non-masked regions of the input image) and also have more arti-
facts. In addition, the similar pattern of corrupted regions in the
non-masked regions are also captured by Det as the training pro-
gresses. The processing of this weakly supervised learning can be
written as V = Det(Iout), where V is the output of detector Det to
evaluate the prediction Iout . The valuation V is the same size as the
mask M, and its value, from 0 to 1, reflects the realistic degree of
each pixel, i.e., the lower value indicates the more realistic comple-
tion result. Unlike the standard discriminator, the detector Det gives

a human-like evaluation of the inpainted image, rather than a rough
score. More analysis about the output of the detector Det will be
shown in Section 4.5.

The coupled training should be executed between the genera-
tor G and the detector Det . As the coupled intermediate, Iout is the
input of the detector Det , while valuation V, inserted in the recon-
struction loss (see Eq. (3)), constitutes a weighted reconstruction
loss, which optimizes the generator G. A segmentation loss con-
sidering the imbalance between masked and non-masked regions
is used to optimize the detector Det . The above description is a
typically adversarial process where the detector accurately locates
artifacts, i.e., minimization of the segmentation-based loss, while
the generator tries to deceive the detector that the probability of
the artifacts in any location is the same, i.e., maximization of the
segmentation-based loss. We will validate the proposed framework
in Section 4.3, and discuss the details of the loss functions and their
implementation in Section 3.4.

3.3. Network Architecture

The proposed image inpainting framework consists of two net-
works: the generator G and the detector Det .

3.3.1. Generator

The generator following an architecture similar to EdgeCon-
nect [NNJ*19] comprises three components: two down-sampling
layers, eight residual blocks [HZRS16], and two up-sampling lay-
ers, as shown in Fig. 2. A convolutional layer with kernel size =
4 and stride = 2 executes down-sample, and up-sample is con-
ducted by a deconvolutional layer with kernel size = 4 and stride

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.



R.Zhang et al. / Pixel-wise Dense Detector for Image Inpainting

= 2. Each of residual block holds two dilated convolutions [YK15]
with kernel size = 3 , stride = 1 and dilation factor = 2. After all
convolutions/deconvolutions except the last convolution in whole
network, instance normalization [UVL17] and ReLU is followed,
successively.

3.3.2. Detector

The detector is a seven-layer fully convolutional network, which
is augmented by in-network up-sampling and pixel-wise loss for
dense evaluation of the inpainted image. The first five convolu-
tional layers down-sample images twice, followed by two deconvo-
lutional layers to up-sample images back to the original size. The
final softmax layer transforms the output to the probability map V.
Leaky ReLU with α = 0.2 is used in down-sampling stage, and all
convolutional kernel size is 4.

3.4. Loss Functions

During the adversarial training, the generator targets both pixel-
wise reconstruction precision and plausible visual result, while
the detector aims at fine-grained evaluation for the prediction. We
incorporate segmentation-based loss and weighted reconstruction
loss to train our detector and generator, separately.

3.4.1. Segmentation-based Loss

As described in Section 3.2, we use the weakly supervised learning
to train our detector with the binary mask as ground-truth, there-
fore, a natural option is the standard pixel-wise binary cross entropy
loss,

LCE =− 1
N

N

∑
i=1

Mi logVi +(1−Mi) log(1−Vi), (4)

where Mi and Vi respectively are the one element of mask M and
valuation V, and N is the number of elements in M. In Eq. (4), a
smaller value of the loss function approximates more accurate val-
uation from the detector due to the weak supervision. Generally,
the missing region in input image is smaller than the valid region,
and this causes the imbalance between positive and negative sam-
ples. To balance the two classes, we introduce a weight α, which
is the mask ratio for input image. The balanced version of LCE is
formulated as

LBCE =− 1
N

N

∑
i=1

(1−α)Mi logVi +α(1−Mi) log(1−Vi). (5)

In addition, we also consider a recent segmentation loss, i.e., fo-
cal loss [LGG*17], which is an enhanced version of Eq. (5) with
tunable focusing parameter γ≥ 0,

LFocal =−
1
N

N

∑
i=1

(1−α)(1−Vi)
γMi logVi

+αVγ

i (1−Mi) log(1−Vi).

(6)

In our experiments, we compare these three optional loss func-
tions for training the detector, and find that the focal loss can yield
the best performance, as shown in Section 4.4.

3.4.2. Weighted Reconstruction Loss

The generator learns with two objectives: the realistic visual qual-
ity and the consistency with the ground-truth image. The traditional
adversarial framework combines these objectives with two hyper-
parameters shown in Eq. (3), but it is still multi-objective optimiza-
tion essentially. Compared with the single-objective optimization,
multi-objective optimization is often difficult, e.g., the balance be-
tween the maximum margin and the minimum error is a tough prob-
lem in Soft-Margin SVM algorithm [CWYZ04]. More importantly,
tradeoff parameters without the physical significance to explain re-
duces generalization in different inpainting cases, i.e., the dataset
of face, scene and street view needs corresponding parameters. To
address this problem, we refer to Boosting algorithm [DSS93], the
idea is to increase the weight of weak samples and decrease the
weight of strong samples. For a single image inpainting, the valua-
tion V distinguishes the weak or strong pixels appropriately. There-
fore, our proposed weighted reconstruction loss merging two objec-
tives can be written as

Lw =
1
N

N

∑
i=1

Wi · ||Ii
out − Ii

gt ||1, (7)

where Wi, Ii
out , and Ii

gt are the pixel-wise weight W, prediction Iout
and ground-truth Igt , respectively. Note that the weight W maps to
the valuation V, called weight mapping (please see following Sec-
tion 3.4.3 for details). Minimization of the weighted reconstruc-
tion loss for the generator is to multiply the artifact by a smaller
weight, which is just the opposite target of the detector, described
in Eq. (4). Competition between the generator and detector drives to
improve their capabilities until the artifacts are hard to be perceived
by naked eyes or the detector, which is the fundamental purpose of
image inpainting task.

3.4.3. Weight Mapping

For high accuracy of the missing region reconstruction, we adopt to
enhance the weight of weak pixels instead of subtracting the weight
of strong pixels, so the range of the weight W is [1,+∞). The
weight mapping is a transition function from the valuation [0,1]
to the weight [1,+∞), and the candidate is linear or exponential
functions.

• Linear transition can be written as W = 1 + V, and the range
of the weight W is [1,2]. Although the simple form is easy to
implement, the low upper bound value causes less enhancement
for awful reconstruction.
• Exponential transition can be written as W = xV, where x (x > 1)

is a base number of exponential function, and the range of the
weight W is [1,x]. Compared with linear transition, the expo-
nential transition reduces the relative weight on well-inpainted
pixels, putting more focus on artifacts. Unlike the tradeoff pa-
rameters λadv and λ`1 , x controls the refined texture completion
in the missing region purposefully, as shown in Fig. 3. The larger
value of the base number indicates the clearer and more exquisite
edge or texture information.

To sum up, we combine the weighted reconstruction loss and
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GT Input Linear Exp(e) Exp(10)

Figure 3: From left to right: the ground-truth image, the corrupted image, result using linear function, result using exponential function with
e and 10 as base separately. The edge ratios after canny algorithm [Can86] with σ = 1.0 are 10.14% (GT), 8.61% (Line), 8.72% (Exp(e))
and 9.39% (Exp(10)).

focal loss as the final loss function to train the whole framework,
which introduces the min-max adversarial process as follows:

 min
G
||xDet(G(Iin,M))� (G(Iin,M)− Igt)||1,

max
Det
−LFocal(Det(G(Iin,M)),M).

(8)

From Eq. (8), the generator and detector in our framework just dis-
pute about the weight value in the corrupted regions (not involved
in non-masked regions), which is an improvement of the global
competition in the GAN-based framework to solve image inpaint-
ing problem.

4. Experimental Results

To validate our proposed method, we quantitatively and quali-
tatively compare our method with several recent state-of-the-art
methods on three public datasets including CelebA-HQ [LLWT15;
KALL17], Places2 [ZLK*17], and Paris StreetView [DSG*12].
Moreover, comparisons with relative inpainting frameworks under
the same generator verify the effectiveness of our detection-based
framework. Ablation study is conducted to choose the appropriate
loss for the training of our detector, and the visualization of the
valuation is also analyzed to validate the ability of our detector.

4.1. Implementation Details

We first describe the details of three public datasets used in our
experiments. CelebA-HQ [LLWT15; KALL17] is a high quality
face dataset with 30K images, and we randomly select 27K im-
ages for training and the remaining 3K images for testing. For
Places2 [ZLK*17], we select 30 categories for our training and test-
ing. We randomly sample 2K images from per category in training
split of Places2 to construct our training set (60K images). The cor-
responding 3K images in testing split of Places2 are directly as our
testing set. For Paris StreetView [DSG*12], we keep original splits,
i.e., 14,900 images for training and 100 images for testing.

For the irregular training masks, we create 180K masks
with/without border constraints from the source of QD-
IMD [Isk18] that is a collection of 50 million human drawings.

Several data augmentation operations: rotation, dilation, and crop-
ping are adopted in sequence during the mask generation. The ir-
regular mask set from Liu et al. [LRS*18] including 12K masks is
used as testing masks. Note that both training and testing masks are
classified by ranges of the mask ratio from [0.01,0.1] to [0.5,0.6]
with the step of 0.1.

In view of computational cost, we resize images and masks to
256× 256 as the input of networks. The Adam optimizer [KB14]
is used to optimize the parameters of inpainting models with the
learning rate of 10−4 and β1 = 0,β2 = 0.9. We train the model for
100 epochs with the batch size of 8. During the training period,
the focusing parameter γ in focal loss (Eq. (6)) is set to 2.0, and the
weight mapping mentioned in Section 3.4.3 is set to the exponential
transition with 10.0 as the base number.

4.2. Comparison with State-of-the-arts

We compare the proposed method with three representative state-
of-the-art works that are different kinds of deep inpainting tech-
niques:

• PConv [LRS*18]: The method uses a novel partial convolution
instead of standard convolution to solve inpainting problem.
• PEN [ZFCG19]: A pyramid-context encoder network with a se-

ries of attention modules for inpainting.
• GConv [YLY*19]: A two-stage inpainting network with

gated convolution, which is an upgrade of Contextual Atten-
tion [YLY*18].

For a fair comparison, these three existing methods and our
method are all trained on three public datasets mentioned above.
Officially released source codes of PEN and GConv are obtained
from their respective project page [Zen19; Yu19]. As the source
code of PConv is not available at the time of experiments, we use
an unofficial implementation [Gru19] to train the model under our
careful matching with their paper [LRS*18]. For each inpainting
technique, the mean inference time of a 256× 256 image on three
datasets are recorded: PConv (27.97ms), PEN (61.08ms), GConv
(18.91ms) and our method (18.80ms). Because of the one-stage
network without special modules like attention layer leveraged in
the generator, our method has an advantage on the time cost. More-
over, due to the short inference time of our detector (13.07ms), it is
high-efficiency to train our whole framework.
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OursGT Input PConv PEN GConv

Figure 4: Example results of qualitative comparison. From top to bottom splited three groups from CelebA-HQ, Places2 and Paris StreetView
testing set, respectively.
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OursGT Input PConv PEN GConv

Figure 5: Example results for [0.01, 0.1] (top) and [0.5, 0.6] (bottom) mask from CelebA-HQ, Places2 and Paris StreetView testing set.

4.2.1. Qualitative Comparisons

Fig. 4 shows some example outputs of four different models,
i.e., PConv [LRS*18], PEN [ZFCG19], GConv [YLY*19] and
our method. There is no post-processing operation to ensure fair-
ness. We observe that PConv [LRS*18] sometimes suffers from
obvious visual artifacts and produces some meaningless textures.
PEN [ZFCG19] generates checkerboard artifacts in corrupted re-
gions. It also shows poor coherence with background because of
over-smoothing results and color inconsistency. GConv [YLY*19]
produces better results but still exhibits imperfect details. Our
method achieves more plausible results, especially in face image
cases. More comparisons are provided in supplemental material. In
addition, we specifically illustrate some inpainting results on ex-
treme mask range to verify our framework. As shown in Fig. 5, for
the trivial details, such as eyes and brows in face images, our results

are slightly superior to that of other three methods on small mask
range. Our method also achieves competitive results on large mask
range in Fig. 5 and the following quantitative analysis.

4.2.2. Quantitative Comparisons

Multiple reasonable contents combined with contextual back-
ground constitute a realistic image, which may be different from
the ground-truth image. Because the nature of the non-unique so-
lution of image inpainting problem, numerical metrics are difficult
to evaluate the quality of a single inpainting case. However, the
mean value of metrics on whole dataset could measure the per-
formance of inpainting techniques. In our work, we follow the
previous inpainting works and measure the results with four met-
rics: `1 error, peak signal-to-noise ratio (PSNR), structural sim-
ilarity index (SSIM) [WBSS04] and Fréchet Inception Distance
(FID) [HRU*17]. The first three metrics calculate pixel-wise de-
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GT Input Weight Adv Det

Figure 6: Comparison between results of hard-weighted `1 loss based framework (Weight), typical adversarial framework (Adv) and
detection-based generative framework (Det).

Table 1: Quantitative comparison of four different inpainting methods on CelebA-HQ and Places2. “C” stands for CelebA-HQ and “P”
stands for Places2. Note that each statistic is calculated over all testing set in a fixed mask order. † Lower is better. ¶ Higher is better.

Mask (0.01-0.1] (0.1-0.2] (0.2-0.3] (0.3-0.4] (0.4-0.5] (0.5-0.6]
Data C P C P C P C P C P C P

` 1
(%

)†

PConv 0.84 1.27 2.05 3.07 3.57 5.16 5.43 7.37 7.59 9.94 12.00 14.14
PEN 0.80 1.11 2.15 2.96 3.88 5.25 5.83 7.59 8.02 10.19 11.77 13.95

GConv 0.65 1.00 1.81 2.71 3.41 4.98 5.33 7.44 7.53 10.22 12.05 14.97
Ours 0.69 1.00 1.62 2.36 2.82 4.09 4.28 5.98 6.06 8.18 10.05 12.10

PS
N

R
¶ PConv 34.88 31.99 30.00 27.27 27.20 24.79 24.95 23.07 23.12 21.58 20.33 19.56

PEN 35.34 33.24 29.76 27.72 26.79 24.85 24.70 23.04 23.06 21.58 20.85 19.84
GConv 37.14 34.05 31.02 28.26 27.57 25.00 25.03 22.84 23.10 21.16 20.22 18.88
Ours 36.37 33.51 32.02 29.43 29.13 26.64 26.81 24.68 24.89 23.04 21.79 20.74

SS
IM

¶ PConv 0.983 0.961 0.963 0.917 0.936 0.866 0.898 0.809 0.851 0.738 0.744 0.615
PEN 0.988 0.975 0.965 0.929 0.933 0.867 0.894 0.801 0.849 0.723 0.764 0.605

GConv 0.991 0.978 0.971 0.936 0.941 0.876 0.902 0.808 0.856 0.73 0.750 0.594
Ours 0.990 0.977 0.977 0.949 0.958 0.907 0.930 0.856 0.894 0.792 0.793 0.665

FI
D
†

PConv 2.79 4.44 4.42 8.38 5.60 12.7 7.73 17.46 11.02 24.3 15.16 32.75
PEN 1.41 3.1 4.19 8.76 8.38 17.31 12.68 29.84 18.73 47.05 23.38 66.7

GConv 0.78 2.27 2.05 6.02 3.93 11.02 5.86 16.39 8.64 22.75 12.75 33.17
Ours 1.08 2.82 1.86 5.78 3.34 10.38 5.16 16.18 7.84 23.89 15.34 37.18

viation under the assumption that recovery regions target to the
ground-truth images. FID based on semantic measurement scales
the Wasserstein-2 distance between distributions of real and recon-
structed images with a pre-trained Inception-V3 model [SVI*16].
Table 1 reports the quantitative comparison results of all four meth-
ods on CelebA-HQ and Places2 dataset. Our method performs best
for all measure in the range [0.1,0.4], and we could still achieve
competitive results with other works in too low/too high intervals.
As the detector is not sensitive to the mask with much small mask
ratio, our model has less poor performance at the mask range of
[0.01,0.1] , compared with GConv model.

4.3. Comparisons with Relative Inpainting Frameworks

We also compare the proposed detection-based generative frame-
work with two relative image inpainting frameworks:

• Weight: The framework just involves the generator without
the discriminator. Its objective function usually adopts hard-
weighted `1 loss, i.e., assign heavy weight (λ1) to the corrupted
regions, and light weight (λ2) to non-masked regions. We set
λ1 = 6 and λ2 = 1, which is the same as PConv [LRS*18].
• Adv: The framework, first used by Context Encoders [PKD*16],

combines reconstruction loss with adversarial loss to train
the model. Most recent deep inpainting methods including
PEN [ZFCG19] and GConv [YLY*19] adopts it as well.
• Det: The detection-based generative framework we proposed ap-

plies in image inpainting task.

For a fair comparison, the generator in above three frameworks
are the same, and detailed structure is described in Section 3.3.
Sampled results of different frameworks are shown in Fig. 6. In the
first row, Weight and Adv fail to reconstruct reasonable structures
of eyes. As we see zoom-in regions, Weight produces the over-
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Masked GT Result M(Res)M(GT)

Figure 7: Visualization of the output of the detector.

Table 2: The evaluation results of ablation study about loss function of detector: the cross entropy loss (CE), the balanced cross entropy loss
(BCE), and the focal loss (Focal). Higher is better for both two metrics.

Mask (0.01-0.1] (0.1-0.2] (0.2-0.3] (0.3-0.4] (0.4-0.5] (0.5-0.6]
Metrics PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

CE 35.88 0.989 31.77 0.976 28.9 0.956 26.56 0.927 24.64 0.890 21.49 0.784
BCE 36.29 0.990 31.88 0.976 28.95 0.956 26.6 0.927 24.67 0.889 21.49 0.784
Focal 36.37 0.990 32.02 0.977 29.13 0.958 26.81 0.93 24.89 0.894 21.79 0.793

smoothing result at the border of bank and lake, and the result of
Adv is also blurry. Det outperforms all the other frameworks in de-
tail, it is largely because of the advanced competition about “Where
are the artifacts?” instead of “Is the image real or fake?”.

4.4. Ablation Study

In this experiment, we conduct an ablation study to evaluate the
performance of several optional detection loss on CelebA-HQ, i.e.,
the standard cross entropy loss, the balanced loss, and the focal loss.
We use the six ranges of the mask ratio mentioned in Section 4.1.
The corresponding results are reported in Table 2. We find that the
focal loss finally achieves the highest performance, especially for
PSNR. Therefore, we choose the focal loss as our loss function to
train the detector. However, the results of focal loss are slightly
better than that of standard cross entropy loss. The reason is that
although the focal loss can solve imbalance problem to improve
the detection accuracy [LGG*17], but such improvement implicitly
affect the final inpainting results.

4.5. Visualization of Detection

The detector is an important component in our proposed frame-
work, and its results are close related to the inpainting quality.
Through visualizing the evaluation of the inpainted images and the
corresponding ground-truth images, we analyze how the detector
perceives the artifacts by weakly supervised learning. In detail, we
respectively feed the inpainted image and corresponding ground-
truth image into the trained detector, and then visualize the col-
ormaps of the output of the detector. The visualization results are
shown in Fig. 7, where red color means the region has artifacts with

high probability, and blue color means low probability. We find that
the colormaps of the ground-truth images (“M(GT)” in Fig. 7) are
irregular showing a bit relation with image contents, whereas the
colormaps of inpainted images (“M(Res)” in Fig. 7) show strong
correlation with input masks (“Masked” in Fig. 7), i.e., most of red
pixels are in/beside the mask regions. In the meanwhile, the obvi-
ous visual artifacts (the regions highlighting with the red rectangle
in inpainted results) match with the hottest regions in the colormaps
of inpainted results. Specially, in the second row of Fig. 7, the red
rectangle in “Result” corresponds to the non-masked region around
the missing region in “Masked”. This means the detector learns the
location of the artifacts rather than the binary mask. Consequently,
the output of detector has the ability to indicate the position of de-
fects, which is to some extent consistent with the perception of
human eyes, and this useful position information is inserted into
reconstruction loss to enhance visual artifacts.

4.6. Real-world Applications

We demonstrate some daily applications of our whole framework
on image translation. Fig. 8 shows our results of object removal
(the left column), text removal (the middle column) and old photo
restoration (the right column). We leverage the model trained on
Places2 dataset without fine-tuning to conduct object removal task,
which appears the harmonious filling contents, especially at the
mask boundaries. Due to the large domain gaps between textual
images and inpainting benchmarks, we retrain our model on the
dataset collected in real world to solve text removal problem. The
experimental results show that our method can handle the complex
illumination and noise in real scenarios. Following [WZC*20], we
synthesize amount of training data to train the model and then re-

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.



R.Zhang et al. / Pixel-wise Dense Detector for Image Inpainting

Figure 8: Example results of daily applications. From left to right, three split groups are results of object removal, text removal and old photo
restoration, respectively. For each pair of images, the top image is the input and the bottom image is the image translation result.

pair the old photos, and the results indicate that our method can
recover unstructured degradation and structured scratches.

5. Discussion and Conclusion

In this paper, we proposed a detection-based generative framework
to address image inpainting problem. To perceptually localize vi-
sual artifacts in inpainted images, we introduced a dense detec-
tor, which is trained by weakly supervised learning, to evaluate
the quality of inpainted images in a pixel-wise manner. Further-
more, the reconstruction loss is combined with such evaluation us-
ing a weighting criterion to train the generator, which avoid tuning
the tradeoff parameters manually. Extensive experiments demon-
strate the superiority of proposed detection-based image inpainting
framework. However, semantic information may disturb our de-
tector to omit feeble artifacts existing in inpainted images during
training period. From Table 1, this obstruction is apparent in case
of small mask ratio. As Fig. 9 shown, the detector easily captures
artifacts from heavy scratches (the region highlighting with the red
rectangle) in the second row, while the detector pays more atten-
tion to semantic information instead of tiny scratches in the first
row. For large mask ratio, mask with too rough information of arti-
facts location may not be suitable to weakly supervised learning of
the detector. Accurate artifacts localization is an open problem for
the detection-based framework to solve. In future work, this frame-
work may extend to other conditional generative tasks, e.g., image
synthesis and image denoising. We also plan to implement our ap-
proach with the open source platform, Jittor [HLY*20], for shorter
training time.
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